Preparatory excercises

Induction

We adopt the following axioms for addition and multiplication:

- $\forall x \ x + 0 = x$
- $\forall x, y \ x + S(y) = S(y+x)$
- $\forall x \ x \cdot 0 = 0$
- $\forall x, y \ x \cdot S(y) = (x \cdot y) + x$

Prove that:

1. $\forall x \ (S(x) = x + S(0))$ 2. $\forall x \ (S(x) = S(0) + x)$ 3. $\forall x \ (x + 0 = 0 + x)$ 4. $\forall x \ (x = x \cdot S(0))$ 5. $\forall x \ (x = S(0) \cdot x)$ 6. $\forall x \ (x \cdot 0 = 0 \cdot x)$ 7. $\forall x \forall y \forall z \ ((x + y) + z = x + (y + z)))$ 8. $\forall x \forall y \forall z \ (x \cdot (y + z) = (x \cdot y) + (x \cdot z)))$ 9. $\forall x \forall y \forall z \ ((x \cdot y) \cdot z = x \cdot (y \cdot z)))$ 10. $\forall x \forall y \ (x + y = y + x)$ 11. $\forall x \forall y \ (x \cdot y = y \cdot x)$ 12. $\forall x \forall y \forall z \ ((x + y) \cdot z = (x \cdot z) + (y \cdot z)))$

Algebra of sets

Prove that for every set A, B and C:

- 1. $A \setminus (A \cap B) = A \setminus B$
- 2. $(A \cup B) \setminus B = A \setminus B$

3. $(A \cap B) \cup B = B$ 4. $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$ 5. $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$ 6. $A \setminus (A \setminus B) = A \cap B$ 7. $A \cap B = \emptyset \to A \setminus (B \cap C) = A$ 8. $A \subseteq B \equiv (A \setminus B) = \emptyset$ 9. $(A \setminus B) \cap B = \emptyset$

Relations, functions, orderings

- 1. Let Z be the set of all integers (positive and negative). Check whether the function $f: Z \to Z$ defined as $f(x) = x^2 1$ is:
 - (a) injective,
 - (b) surjective.
- 2. Is it true that:

If R is a linear ordering on A and S is a linear ordering on B, then $R \cap S$ is a linear ordering on $A \cap B$?

3. Is it true that:

If R is a linear ordering on A and S is a linear ordering on B, then $R \cup S$ is a linear ordering on $A \cup B$?

- 4. Assume that $(X, R) \cong (Y, S)$. Prove that:
 - If R is irreflexive on X, then S is irreflexive on Y,
 - If R is antisymmetric on X, then S is antisymmetric on Y,
 - If R is total on X, then S is total on Y,
 - If there are minimal elements in (X, R), then there are also minimal elements in (Y, S).
- 5. Let $X \sim Y$ be defined as $\exists f[f : X \xrightarrow[onto]{onto} Y]$. Let P(x) denote the power set of x. Prove that if $X \sim Y$, then $P(X) \sim P(Y)$.